
Microsoft

, Software Design Engineer
Systems Developer Relations

Microsoft Windows Version 3.1

  30 March, 1992



The information and code provided in this document is subject to change without notice and does not represent a commitment on the part of Microsoft 
Corporation or the author.
THE INFORMATION AND CODE PROVIDED HEREUNDER (COLLECTIVELY REFERRED TO AS "SOFTWARE") IS PROVIDED AS IS WITHOUT 
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR, MICROSOFT CORPORATION, OR ITS 
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF 
BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF THE AUTHOR, MICROSOFT CORPORATION, OR ITS SUPPLIERS HAVE BEEN ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGES.  SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR 
CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.
The sample code may be copied and distributed royalty-free subject to the following conditions:
1. You must distribute the sample code only in conjunction with and as a part of your software product; 
2. You do not use Microsoft's name, logo or trademark to market your software product;

3. You include the copyright notice that appears on the Software on your product label and as a part of the sign-on message for your software product;
and

4. agree to indemnify, hold harmless, and defend Microsoft from and against any claims or lawsuits, including attorney's fees, that arise or result from the
use or distribution of your software product.

Please note that this document and any associated sample code is not officially supported by Microsoft.
The information provided here is intended to help software developers programming in the Microsoft

Windows environment.  Reader are responsible for finding and funding their own support.  Please do not
ask the author for technical support as such requests will simply be referred to a support organization such

as Microsoft OnLine or Compuserve.

Updates and error lists to the document and sample code will be posted on both OnLine and Compuserve as
necessary.

Your feedback is a very important part in providing documents such as this to the developer community for
Microsoft Windows.  At the very least, please tell me your impressions.  If you can take the time, let me
know how you used this document, how you used the sample code, what aspects you found helpful, and
what you didn't like.  A work like this document is always open to improvement, so please report any

problems, errors, or general criticisms you might have.  Reach me through mail, fax (dial (206)93MSFAX),
or electronic mail at the following addresses:

Internet: kraigb@microsoft.com
Compuserve: 70750,2344

You deserve the best information we can provide.  With your help, future documents and samples covering
Microsoft Windows technologies will be even better!

Kraig Brockschmidt

Redmond, Washington  USA



Windows, the Windows logo, and the Microsoft logo are registered trademarks of Microsoft Corporation.

Bulletproof Functions with ToolHelper
© Microsoft Corporation, All rights reserved.

Microsoft Corporation
One Microsoft Way
Redmond, WA  98052 KEB.SDR.003



Table of Contents

µ1.-------------------------------------------Application Robustness and Fault Trapping
1

1.1. The Windows 3.1 ToolHelper DLL 1
1.1.1. InterruptRegister 1

1.1.2. InterruptUnRegister 2

1.2. Application-Handled Faults 3
1.3. The Interrupt Handler 3

1.3.1. Pass the Interrupt to the Next Handler 4

1.3.2. Terminate the Application 5

1.3.3. Correct the Problem and Continue 5

1.3.4. Abort the Operation with Catch and Throw 5

2. Sample Application:  FAULT.EXE-----------------------------------------------------7

i



1 Application Robustness and Fault Trapping

When Windows 3.0 moved applications into protect mode, those applications that attempted to read
to or write from memory outside their address space caused a general protection violation.  This
led to the Unrecoverable Application Error (UAE).  Under Windows prior to version 3.0 that
only ran in real mode, these applications had no apparent problem since they could write to or
read from any memory address.  However, they were generally trashing memory and possibly
causing problems in other applications.

A side-effect of UAEs on Windows 3.0 was system instability–sometimes a UAE in an application
could simply lock up the entire system.  Windows 3.1 is much improved over its predecessor so that
now a UAE will  almost  never  cause a system crash,  and some UAEs are not  even fatal  to  an
application (in this case, the user may attempt ignore the problem and continue, which does not
always insure recovery).

Windows 3.1 has gone through tremendous internal revision to validate every pointer through which
it  attempts to read or write.   In short,  Windows 3.1 will  not crash inside a Windows API call.
However, when an application faults in its own code, there is no salvation–often the user is forced to
close the application.

System robustness can only prevent a faulting application from crashing the system; it does nothing
to protect the data in that application.  This document will describe a method through which a retail
application can trap both Divide By Zero exceptions and General Protection (GP) Faults and recover
from them using the Catch and Throw Windows API.  Instead of forcing the user to terminate the
application on either exception, the application can quietly recover from the problem and fail the
operation, if at all possible.

The  ability  to  trap  exceptions  gives  and  application  considerable  power  and  considerable
responsibility.  ToolHelper allows you to trap all exceptions, even Int 3 (debug breakpoints) and the
Ctrl+Alt+SysRq key.   While  use of  such exception  handling  (that  is,  for  debugging interrupts)
should never be used in a retail product,  they can allow your application's debugging version to
perform  small  cleanup,  log  errors,  etc.,  without  user  intervention  and  without  terminating  the
application.

2 The Windows 3.1 ToolHelper DLL
An application can trap exceptions using the InterruptRegister and InterruptUnRegister functions

contained in the Windows 3.1 TOOLHELP.DLL.  This library of 34 functions primarily allows
tool vendors with debuggers and development environments to handle exceptions and to retrieve
a great deal of information about the system without knowing any internal structures.  However,
you can view your application as having a small built-in function debugger in the form of an
exception handler.  If an exception happens within a single function, your application can take
appropriate steps to correct it, much like you might use your debugger to manually clear such a
problem.



Page 2 Microsoft

The  Microsoft  Windows  Software  Development  Kit  version  3.1  contains  a  sample  application
(samples\toolhelp\thsample) that demonstrates use of all ToolHelper functions as well as handling
all possible interrupts with InterruptRegister.  It does not, however, demonstrate the use of Catch
and Throw for recovery purposes.

3       InterruptRegister  
ToolHelper's  InterruptRegister  function  installs  an  application-defined  callback  function  that

ToolHelper links into the chain of interrupt handlers.  This handler is given extraordinary power,
as all system interrupts are passed through it.  An important implication of this power is that if
your handler does not want the interrupt, make the default processing as fast as possible.

A bug in  the  Windows 3.10  version  of  ToolHelper  effectively  limits  the  number  of  registered
handlers to 15, simply because ToolHelper is running out of heap space.  Even through the problem
will  be fixed in a future maintenance upgrade (such as Windows 3.1a),  be sure to detect  when
InterruptRegister fails, and notify the user of the condition (possibly terminating your application).
You do not want to execute functions that expect an exception handler to exist.  In short, you should
treat interrupt handlers as a scarce system resource in the same way you treat the timer.

InterruptRegister  takes  two  parameters:   a  task  handle  and  a  procedure-instance  address  (from
MakeProcInstance)  to  your  exported  handler  function.   The  task  handle  identifies  the  task
registering the handler and in no way causes ToolHelper to filter exceptions before passing them
on to your handler.  In other words, your handler always receives interrupts for any task, regardless
of this task handle passed to InterruptRegister.  Applications pass NULL for the task handle, which
instructs ToolHelper to use the current task (from GetCurrentTask).

For example,  you might install an exception handler that is active for the life of the application
while processing your main window's WM_CREATE message.  If InterruptRegister fails, you can
notify the user and terminate the application:

case WM_CREATE:
    /*
     * pGlob points to global variables.  We store the value
     * from MakeProcInstance in pfnInt.  Earlier we initialized
     * the hInst field with the instance of the application.
     */

    //ExceptionHandler is the callback's name (HANDLER.ASM)
    pGlob->pfnInt=MakeProcInstance((FARPROC)ExceptionHandler, pGlob->hInst);

    if (NULL!=pGlob->pfnInt)
        {
        //If we fail to register, then fail the create and the application.
        if (!InterruptRegister(NULL, pGlob->pfnInt))
            {
            MessageBox(hWnd, "InterruptRegister Failed.", "Fatal Error", MB_OK);
            return -1L;
            }
        }
    break;



Microsoft Page 3

4       InterruptUnRegister  
InterruptUnRegister  is,  of  course,  the  opposite  function  from  InterruptRegister,  notifying

ToolHelper that the application no longer needs the interrupt handler.  InterruptRegister simply
takes the same task handle as was passed to InterruptRegister.   If  you registered the handler
while processing WM_CREATE as in the example above, then unregister the interrupt during
WM_DESTROY.  Don't forget to call FreeProcInstance for the callback address:

case WM_DESTROY:
    //Remove our exception handler and free the proc address.
    if (NULL!=pGlob->pfnInt)
        {
        InterruptUnRegister(NULL);
        FreeProcInstance((FARPROC)pGlob->pfnInt);
        }

    PostQuitMessage(0);
    break;

5 Application-Handled Faults
An application  can safely handle Divide By Zero  exceptions or  General  Protection (GP) Faults

caused by the application's code–within an application's exception handler you should only deal
with those exception that you know were caused in your application.  Under Windows 3.0 and
3.1, where a task switch cannot occur within the scope of a function (unless you explicitly yield
control  through  PeekMessage  or  GetMessage),  you  can  safely  process  either  of  these
exceptions--they had to be caused by your code.

Most of the time your application is running, it will not need to handle any exceptions.  Within
particular  functions,  it  may want  to  trap  Divide by Zero,  GP Faults,  or  both.   A single global
variable  (or  a  function  to  set  that  variable)  shared  between  the  application  functions  and  the
exception handler is sufficient.  Before executing any code that might fault, the application loads
this value with bits indicating which exceptions to trap.   When an interrupt  occurs,  the handler
checks this value against the actual interrupt that occurred.  If there is a match, then the handler can
process the fault; otherwise, it passes the interrupt to the next handler in the chain.

6 The Interrupt Handler
Your exception handler is best written in assembly language, since you must move the contents of

AX into DS (to access global variables) and because information necessary for processing the
interrupt is held on the stack.  The most important value is at [SP+06h] which is the interrupt
number:

Interrupt     Definition                                                                                              
0 Divide by zero
1 Debugger interrupt
3 Breakpoint
6 Invalid opcode
12 Stack fault



Page 4 Microsoft

13 GP Fault
14 Page fault not cause by normal virtual memory management
256 Ctrl+Alt+SysRq was pressed.

See the listing for HANDLER.ASM later in this document for a complete description of the values
on the stack.

The high bit of the interrupt number might be set, meaning that the fault occurred because of a low-
stack condition.  This situation requires the application to either terminate itself or pass the interrupt
on.  Do not attempt to restart the operation or otherwise recover from the error.

In short, applications should only handle Interrupt 0 and 13; all others, including low-stack faults,
should be used only in a debugging version of the application.

cProc   ExceptionHandler, <PUBLIC,FAR>
cBegin  nogen

        mov     ds,ax               ;Make sure we can reference our data.

        mov     ax,bp               ;Load the interrupt number without changing
        mov     bp,sp               ;the BP register and without using the stack.
        mov     bx,[bp+06]
        mov     bp,ax

        ;
        ; Cycle through the possible faults we are looking for.
        ; First, the high bit might be set in the interrupt meaning
        ; that we have a low-stack fault.  Since we do not handle
        ; these, we exit this handler.
        ;

        test    bx,08000h           ;Check high bit
        jnz     EHExit              ;Leave it it's set--we can't handle it.

        mov     ax,_wException      ;Get the exceptions we want to trap.
        or      ax,ax               ;Do we want any?
        jz      EHExit

EHDivideByZero:
        ;;Check for divide by zero.

        test    ax,EXCEPTION_DIVIDEBYZERO
        jz      EHGPFault
        or      bx,bx
        jz      EHThrow

EHGPFault:
        ;;Check for a GP fault.

        test    ax,EXCEPTION_GPFAULT
        jz      EHExit
        cmp     bx,13
        je      EHThrow

;
; Code for each handling method goes here.  See below.
;

cEnd    nogen



Microsoft Page 5

Within this function you use one of four methods to handle the exception:
1. Pass the interrupt to the next handler.
2. Terminate the application.
3. Correct the problem and continue.
4. Abort the operation and return an error to the faulting function using Catch and Throw.

Each of these methods is described below; we pay close attention to using Catch and Throw as that
method is applied in the sample program given in this document.

7       Pass the Interrupt to the Next Handler  
If the exception handler determines that it cannot process the interrupt, it should always pass it to the

next handler in the chain by executing a RETF instruction:

EHExit:
        retf

8       Terminate the Application  
If a problem is so critical that there is no hope of continuing the application, then the exception

handler can call TerminateApp (in TOOLHELP.DLL).  This is the default behavior for faulting
applications:

EHTerminate:
        add     sp,10                   ;Clear the return data on the stack.

        ;
        ; With TerminateApp you have the choice to display the standard
        ; UAE box or not.  This sample does since it otherwise would give
        ; no indication of the problem.
        ;
        cCall   TerminateApp, <0, UAE_BOX>

Note that you must clear 10 bytes off the stack before calling TerminateApp to insure that the proper
stack frame exists at SP.  You may also pass NO_UAE_BOX to TerminateApp to suppress the usual
box-o-death in case you use another method to notify the user.

9       Correct the Problem and Continue  
If your application maintains state information about what it was doing at the time of a fault, then it

might be possible to correct the problem (by changing a pointer or a terminating condition) and
continue the operation.  This is similar to the Windows 3.1 UAE box that might allow you to
ignore a GP Fault.  In this case you correct the problem, clean up 10 bytes on the stack (to insure
the proper stack frame at SP) and execute and IRET instruction:

EHRestart:
        ;
        ; This code illustrates what we need to do if we wanted to
        ; clean up the problem and restart the instruction that faulted.
        ;



Page 6 Microsoft

        add     sp,10                   ;Clear the return data on the stack.
        iret                            ;Return to the faulting instruction.

10     Abort the Operation with Catch and Throw  
The most powerful and the most dangerous method to handle an exception is to use  Catch and

Throw to essentially execute a far goto;  Catch and Throw are the Windows equivalents of the C
run-time setjmp and longjmp functions.

When  entering  a  function  that  might  fault,  call  Catch  to  save  the  register  state  in  a  global
CATCHBUF structure.  The first time you call Catch here it will always return zero, signifying that
no  error  occurred.   Within  your  exception  handler  you  call  Throw,  passing  to  it  the  same
CATCHBUF used in Catch and a non-zero value.  This value is  again returned from the original
Catch call.  Simply said, Throw reinstates the registers saved in the first call to Catch, which causes
Catch to return again, within the same function as it already returned once.  However, this time it
returns with a non-zero value so you know there was an error.

For example, the code below calls Catch and watches for a GP Fault.  When Catch returns with a
non-zero value, we attempt to perform any necessary cleanup and return a failure code:

WORD        i;
HANDLE      hMem;

/*
 * Call Catch and indicate what exceptions to trap.
 *
 * The first time we call Catch here we will get a 0 return value.
 * When we call Throw in our exception handler, Catch returns with
 * the value given in the second parameter to Throw.  Throw must
 * use the same CATCHBUF we fill here in order to return here.
 */

//Indicate the trap(s) we want.
wException=EXCEPTION_GPFAULT;

/*
 * Save the register state.  pcbEx is a global pointer to a CATCHBUF structure,
 * then check if we returned from the exception handler or Catch itself.
 */
if (0!=Catch(pcbEx))
    {
    /*
     * Free any resources this function allocated, perform other
     * cleanup, turn OFF any exception handling, and return a failure.
     */

    wException=EXCEPTION_NONE;
    return NULL;
    }

//The actual function goes here.
...

The call to Throw within the exception handler is trivial:

EHThrow:
        ccall   Throw,<_pcbEx, 1>  ;Return the exception to the faulting
                                   ;function.



Microsoft Page 7

µ §

Be extremely careful when using Catch and Throw in an application.  Only make jumps using
Throw within the scope of a function.  You can create very unstable situations by calling Catch once
and calling Throw much later after your application has processed messages or there has been a task

switch.  With Catch and Throw, you must be sure that the fault was caused by your application's
code, otherwise you may not insure that other code is cleaning up properly.

Also note that recovering from the error after Catch returns non-zero may not be possible.  Consider 
a situation where a fault occurs and you would like to save the user's data.  If the operation that 
crashed was in saving a file, then you will probably fault again which could put your application in a
much worse state.

Catch and Throw give you a lot of power–be careful not to abuse it.

11 Sample Application:  FAULT.EXE

MAKEFILE

#

# MAKEFILE

#

# FAULT

# Copyright(c) Microsoft Corp. 1992 All Rights Reserved

#

#Remove '#' from next line for "silent" operation

!CMDSWITCHES +s



Page 8 Microsoft

#Compiler and assembler flags

CFLAGS=-c -G2sw -W3 -AS -Od -Zpe

AFLAGS=-Mx -L

#Standard definitions.

DEFS=

INCLS=fault.h

OBJS = fault.obj handler.obj

RCFILES=fault.h fault.ico

.SUFFIXES: .h .c .asm .obj .exe .cxx .res .rc .bas

goal:  fault.exe

##### Rules

.asm.obj:

    masm $(AFLAGS) $(DEFS) $*.asm;

.c.obj:

    cl $(CFLAGS) $(DEFS) $*.c

.rc.res:



Microsoft Page 9

    rc -r $*.rc

fault.exe : $(OBJS) fault.res fault.lnk fault.def

    link @fault.lnk

    rc -v fault.res

##### Dependencies #####

handler.obj  : handler.asm

fault.obj    : fault.c    $(INCLS)

fault.res    : fault.rc   $(INCLS) $(RCFILES)

FAULT.H

/*

 * FAULT.H

 *

 * Definitions and function prototypes for Fault.

 *

 * Copyright(c) Microsoft Corp. 1992 All Rights Reserved

 */



Page 10 Microsoft

#define IDR_MENU            1

#define IDM_EXDIVIDEBYZERO  100

#define IDM_EXGPFAULT       101

//Structure holding the "global" variables.  Creating a structure with

typedef struct

    {

    HWND            hWnd;               //Top-level application window.

    HANDLE          hInst;              //Application instance handle.

    FARPROC         pfnInt;             //GP Fault Handler thunk.

    } GLOBALS;

typedef GLOBALS FAR * LPGLOBALS;

//External:

extern LPGLOBALS     pGlob;

extern CATCHBUF      cbEx;

extern LPCATCHBUF    pcbEx;

extern WORD          wException;

/*

 * Flag values to store in the wException global variable that tells



Microsoft Page 11

 * the handler what type of exceptions we specifically want.

 */

#define EXCEPTION_NONE          0x0000      //Turns handling off.

#define EXCEPTION_DIVIDEBYZERO  0x0001

#define EXCEPTION_GPFAULT       0x0002

#define EXCEPTION_ALL           0x0003      //Looks for all exceptions above.

/*

 * Function prototypes.

 */

//FAULT.C

LONG     FAR PASCAL FaultWndProc(HWND, UINT, UINT, LONG);

BOOL     FAR PASCAL FPerformCalculation(void);

HANDLE   FAR PASCAL HAllocateNumbers(void);

//HANDLER.ASM

void     FAR PASCAL ExceptionHandler(void);

FAULT.C



Page 12 Microsoft

/*

 * FAULT.C

 *

 * Very small Windows application demonstrating how to use the TOOLHELP

 * library to trap GP Faults and Divide by Zero exceptions.  Trapping these

 * faults allows an application to perform cleanup, save files, and

 * otherwise insure integrity of the user's data.

 *

  * Copyright(c) Microsoft Corp. 1992 All Rights Reserved

 *

 */

#include <windows.h>

#include <toolhelp.h>

#include "fault.h"

//Global variable block.

GLOBALS     stGlobals;

LPGLOBALS   pGlob=&stGlobals;

/*

 * These global variables hold information that is needed from the

 * interrupt handler.  They are set apart here to make them more visible.



Microsoft Page 13

 */

CATCHBUF    cbEx;                       //Stores register state.

LPCATCHBUF  pcbEx=(LPCATCHBUF)&cbEx;    //Convenient pointer

WORD        wException;                 //Indicates which exceptions to trap.

/*

 * WinMain

 *

 * Purpose:

 *  Main entry point of application.   Should register the app class

 *  if a previous instance has not done so and do any other one-time

 *  initializations.

 *

 * Parameters:

 *  Standard

 *

 * Return Value:

 *  Value to return to Windows--termination code.

 *

 */

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,

                    LPSTR lpszCmdLine, int nCmdShow)



Page 14 Microsoft

    {

    WNDCLASS        wc;

    MSG             msg;

    pGlob->hInst=hInstance;

    if (!hPrevInstance)

        {

        /*

         * Note that we do not need to unregister classes on a failure

         * since that's part of automatic app cleanup.

         */

        wc.style         = CS_HREDRAW | CS_VREDRAW;

        wc.lpfnWndProc   = FaultWndProc;

        wc.cbClsExtra    = 0;

        wc.cbWndExtra    = 0;

        wc.hInstance     = pGlob->hInst;

        wc.hIcon         = LoadIcon(NULL, IDI_HAND);

        wc.hCursor       = LoadCursor(NULL, IDC_ARROW);

        wc.hbrBackground = COLOR_APPWORKSPACE + 1;

        wc.lpszMenuName  = MAKEINTRESOURCE(IDR_ICON);

        wc.lpszClassName = "Fault";



Microsoft Page 15

        if (!RegisterClass(&wc))

            return FALSE;

        }

    pGlob->hWnd=CreateWindow("Fault", "Exception Handler",

                             WS_MINIMIZEBOX | WS_OVERLAPPEDWINDOW,

                             CW_USEDEFAULT, CW_USEDEFAULT, 400, 120,

                             NULL, NULL, hInstance, NULL);

    if (NULL==pGlob->hWnd)

        return FALSE;

    ShowWindow(pGlob->hWnd, nCmdShow);

    UpdateWindow(pGlob->hWnd);

    while (GetMessage(&msg, NULL, 0,0 ))

        {

        TranslateMessage(&msg);

        DispatchMessage(&msg);

        }

    return msg.wParam;

    }



Page 16 Microsoft

/*

 * FaultWndProc

 *

 * Purpose:

 *  Window class procedure.  Standard callback.

 *

 * Parameters:

 *  The standard.

 *

 * Return Value:

 *  The standard.

 *

 */



Microsoft Page 17

long FAR PASCAL FaultWndProc(HWND hWnd, UINT iMsg, UINT wParam, LONG lParam)

    {

    HANDLE      hMem;

    switch (iMsg)

        {

        case WM_CREATE:

            /*

             * Install the ExceptionHandler function in HANDLER.ASM

             * as our fault handler and store the proc address in the

             * global variable block.

             */

            pGlob->pfnInt=MakeProcInstance((FARPROC)ExceptionHandler, pGlob->hInst);

            if (NULL!=pGlob->pfnInt)

                {

                //If we fail to register, fail the create and the application.

                if (!InterruptRegister(NULL, pGlob->pfnInt))

                    {

                    MessageBox(hWnd, "InterruptRegister Failed.", "Fatal Error", MB_OK);

                    return -1L;

                    }



Page 18 Microsoft

                }

            break;

        case WM_DESTROY:

            //Remove our exception handler and free the proc address.

            if (NULL!=pGlob->pfnInt)

                {

                InterruptUnRegister(NULL);

                FreeProcInstance((FARPROC)pGlob->pfnInt);

                }

            PostQuitMessage(0);

            break;

        case WM_COMMAND:

            switch (wParam)

                {

                case IDM_EXDIVIDEBYZERO:

                    if (FPerformCalculation())

                        {



Microsoft Page 19

                        //This should NOT happen.

                        MessageBox(hWnd, "IMPOSSIBLE: Missed a Divide by Zero!",

                                   "Fault", MB_OK | MB_ICONHAND);

                        }

                    else

                        {

                        MessageBox(hWnd, "Calculation failed: Divide by zero.",

                                   "Fault", MB_OK | MB_ICONEXCLAMATION);

                        break;

                        }

                    break;

                case IDM_EXGPFAULT:

                    hMem=HAllocateNumbers();

                    if (NULL!=hMem)

                        {

                        //This should NOT happen.

                        MessageBox(hWnd, "IMPOSSIBLE:  Missed the GP Fault!",

                                   "Fault", MB_OK | MB_ICONHAND);

                        GlobalFree(hMem);



Page 20 Microsoft

                        }

                    else

                        {

                        MessageBox(hWnd, "Allocation failed: GP fault.",

                                   "Fault", MB_OK | MB_ICONEXCLAMATION);

                        break;

                        }

                    break;

                default:

                    break;

                }

            break;

        default:

            return (DefWindowProc(hWnd, iMsg, wParam, lParam));

        }

    return 0L;

    }



Microsoft Page 21

/*

 * FPerformCalculation

 *

 * Purpose:

 *  Attempts to divide the number 10000 by the numbers 1 through 6.

 *  However, this function was poorly written to use the wrong

 *  terminating condition in a while loop, so the loop executes with

 *  zero as the divisor and faults.

 *

 * Parameters:

 *  None

 *

 * Return Value:

 *  BOOL            TRUE if the function succeeded (this should not happen)

 *                  FALSE if the function failed, even on a divide by zero

 *                  exception.

 */

BOOL FAR PASCAL FPerformCalculation(void)

    {

    WORD        i;

    WORD        wValue;



Page 22 Microsoft

    /*

     * Call Catch and indicate what exceptions to trap.

     *

     * The first time we call Catch here we will get a 0 return value.

     * When we call Throw in our exception handler, Catch returns with

     * the value given in the second parameter to Throw.  Throw must

     * use the same CATCHBUF we fill here in order to return here.

     */

    //Indicate the trap(s) we want.

    wException=EXCEPTION_DIVIDEBYZERO;

    //Save the register state and check if we returned from the exception handler.

    if (0!=Catch(pcbEx))

        {

        /*

         * Now we can safely exit this procedure, skipping the code

         * that faulted.  We indicate that we now want no exceptions

         * by setting wException to EXCEPTION_NONE.

         *

         ***BE SURE to turn off exception handling that uses Catch

         *  and Throw between messages.  In other words, only use

         *  Catch and Throw within the scope of a function, NOT on



Microsoft Page 23

         *  the scope of an application.

         */

        wException=EXCEPTION_NONE;

        return FALSE;

        }

    i=6;

    wValue=10000;

    /*

     * When we check i==1, the condition is TRUE so

     * we continue the loop.  However, the post-decrement

     * on i makes it zero, which will fault.

     */

    while (i--)

        wValue /=i;

    //We should never get here.

    wException=EXCEPTION_NONE;

    return TRUE;

    }



Page 24 Microsoft

/*

 * HAllocateNumbers

 *

 * Purpose:

 *  Attempts to allocate a 1K block of memory and fill it with the

 *  repeating sequence of the values 0 through 255.  However, due to

 *  another bug in this function, we end up writing past the end of

 *  the segment.  We trap the GP Fault and recover by freeing the memory

 *  and indicating that the function failed.

 *

 * Parameters:

 *  None

 *

 * Return Value:

 *  HANDLE          A global memory handle containing the numbers if

 *                  successful, NULL otherwise (including when we GP fault).

 */

HANDLE FAR PASCAL HAllocateNumbers(void)

    {



Microsoft Page 25

    LPSTR       psz;

    WORD        i;

    HANDLE      hMem;

    /*

     * Call Catch and indicate what exceptions to trap.

     *

     * The first time we call Catch here we will get a 0 return value.

     * When we call Throw in our exception handler, Catch returns with

     * the value given in the second parameter to Throw.  Throw must

     * use the same CATCHBUF we fill here in order to return here.

     */

    //Indicate the trap(s) we want.

    wException=EXCEPTION_GPFAULT;

    //Save the register state and check if we returned from the exception handler.

    if (0!=Catch(pcbEx))

        {

        /*

         * Free any resources this function allocated, perform other

         * cleanup, turn OFF any exception handling, and return a failure.

         */



Page 26 Microsoft

        if (NULL!=hMem)

            {

            GlobalUnlock(hMem);

            GlobalFree(hMem);

            }

        wException=EXCEPTION_NONE;

        return NULL;

        }

    //Get 1024 bytes of memory.

    hMem=GlobalAlloc(GMEM_MOVEABLE, 1024);

    psz=GlobalLock(hMem);

    /*

     * Write to 1025 bytes of memory, thus accidentally walking over

     * the edge.  Another case where an erroneous terminating condition

     * in a loop can cause such a problem.

     */

    i=0;

    while (i++ <= 1024)     //Should be i++ < 1024, not <=

        *psz++=(char)i;



Microsoft Page 27

    //We should never get here to return the handle.

    GlobalUnlock(hMem);

    wException=EXCEPTION_NONE;

    return hMem;

    }

FAULT.INC

;

; FAULT.INC

;

; Definitions and external references for use from assembly modules.

;

; Copyright(c) Microsoft Corp. 1992 All Rights Reserved

;

;; External data.

externFP <Throw>                ;From Kernel

externFP <TerminateApp>         ;From ToolHelp



Page 28 Microsoft

externW  <_wException>          ;Indicates what exceptions we want.

externFP <_pcbEx>               ;Pointer to a CATCHBUF to use in Throw

;; Bits for wException.  These must match FAULT.H.

EXCEPTION_NONE          equ     00h     //Turns handling off.

EXCEPTION_DIVIDEBYZERO  equ     01h

EXCEPTION_GPFAULT       equ     02h

EXCEPTION_ALL           equ     03h     //Looks for all exceptions above.

HANDLER.ASM

;

; HANDLER.ASM

;

; ExceptionHandler function used as the callback for the GP Fault Handler.

;

; Copyright(c) Microsoft Corp. 1992 All Rights Reserved

;

    .xlist



Microsoft Page 29

    ?PLM=1

    ?WIN=1

    include cmacros.inc

    include toolhelp.inc

    include fault.inc

    .list

createSeg HANDLER_TEXT, HANDLER_TEXT, BYTE, PUBLIC, CODE

sBegin    HANDLER_TEXT

assumes   CS,HANDLER_TEXT

assumes   DS,_DATA

;

; ExceptionHandler

;

; Purpose:

;  Exception handling function called from ToolHelp when it detects

;  an exception.  If the error was caused by our application AND we

;  want to trap it, then we use Throw to return control to the function

;  that faulted at a point BEFORE the erroneous code.  If we do not

;  want the fault, then we just pass it to the next interrupt handler.

;



Page 30 Microsoft

;  If the fault was caused by our application, we use Throw to return to

;  whatever function caused it.  Otherwise we just let the fault pass.

;

; Parameters:

;  None; however, the stack contains values of interest.  We use AX to

;  simply set the DS register properly.

;

;     |           .           |

;     |           .           |

;     |           .           |

;     |-----------------------|

;     |   SS (fault)          |  SP + 12h

;     |-----------------------|

;     |   SP (fault)          |  SP + 10h

;     |-----------------------|

;     |   Flags (fault)       |  SP + 0Eh

;     |-----------------------|

;     |   CS (fault)          |  SP + 0Ch

;     |-----------------------|

;     |   IP (fault)          |  SP + 0Ah

;     |-----------------------|

;     |   handle (internal)   |  SP + 08h

;     |-----------------------|

;     |   interrupt number    |  SP + 06h



Microsoft Page 31

;     |-----------------------|

;     |   AX (NOT the DS)     |  SP + 04h

;     |-----------------------|

;     |   CS (toolhelp.dll)   |  SP + 02h

;     |-----------------------|

;     |   IP (toolhelp.dll)   |  SP + 00h

;     +-----------------------+

;

;  Note that the interrupt number may have the high bit set to

;  indicate a low-stack fault (above and beyond a normal Int 12 stack)

;  fault.  We trap this condition if we're trapping a stack fault or a

;  GP fault.

;

cProc   ExceptionHandler, <PUBLIC,FAR>

cBegin  nogen

        mov     ds,ax               ;Make sure we can reference our data.

        mov     ax,bp

        mov     bp,sp

        mov     bx,[bp+06]



Page 32 Microsoft

        mov     bp,ax

        ;

        ; Cycle through the possible faults we are looking for.

        ; If BX contains that fault, then we use Throw to return

        ; the error to the application.  Otherwise we pass the

        ; fault down the chain.

        ;

        ; First, the high bit might be set in the interrupt meaning

        ; that we have a low-stack fault.  Since we do not handle

        ; these, we exit this handler.

        ;

        test    bx,08000h           ;Check high bit

        jnz     EHExit              ;Leave it it's set--we can't handle it.

        mov     ax,_wException      ;Get the exceptions we want to trap.

        or      ax,ax               ;Do we want any?

        jz      EHExit

EHDivideByZero:

        ;

        ; Check for divide by zero.

        ;



Microsoft Page 33

        test    ax,EXCEPTION_DIVIDEBYZERO

        jz      EHGPFault

        or      bx,bx

        jz      EHThrow

EHGPFault:

        ;

        ; Check for a GP fault.

        ;

        test    ax,EXCEPTION_GPFAULT

        jz      EHExit

        cmp     bx,13

        je      EHThrow

EHThrow:

        ccall   Throw,<_pcbEx, 1>  ;Return the exception to the faulting

                                    ;function.

EHExit:

        retf

EHRestart:



Page 34 Microsoft

        ;

        ; This code illustrates what we need to do if we wanted to

        ; clean up the problem and restart the instruction that faulted.

        ; This exception handler does not use this code.

        ;

        add     sp,10                   ;Clear the return data on the stack.

        iret                            ;Return to the faulting instruction.

EHTerminate:

        ;

        ; This code illustrates what we need to do if we wanted to

        ; terminate the applciation on this exception.  This exception

        ; handler does not use this code.

        ;

        add     sp,10                   ;Clear the return data on the stack.

        ;

        ; With TerminateApp you have the choice to display the standard

        ; UAE box or not.  This sample does since it otherwise would give

        ; no indication of the problem.

        ;

        cCall   TerminateApp, <0, UAE_BOX>



Microsoft Page 35

cEnd    nogen

sEnd    HANDLER_TEXT

        END

FAULT.RC

/*

 * FAULT.RC

 *

 * Resources such as icons, menus, strings, accelerators, and dialogs.

 *

 * Copyright(c) Microsoft Corp. 1992 All Rights Reserved

 */

#include "fault.h"

IDR_MENU MENU

    BEGIN

     POPUP "&Exceptions"



Page 36 Microsoft

      BEGIN

       MENUITEM "&Divide by Zero",   IDM_EXDIVIDEBYZERO

       MENUITEM "&GP Fault",         IDM_EXGPFAULT

      END

    END

FAULT.DEF

NAME            FAULT

DESCRIPTION     'Exception Handler with Catch and Throw'

EXETYPE         WINDOWS

STUB            'WINSTUB.EXE'

CODE            PRELOAD MOVEABLE DISCARDABLE

DATA            PRELOAD MOVEABLE MULTIPLE

SEGMENTS

                _TEXT        PRELOAD MOVEABLE DISCARDABLE

                HANDLER_TEXT PRELOAD FIXED

HEAPSIZE        8192

STACKSIZE       8192



Microsoft Page 37

EXPORTS         FaultWndProc            @1

                ExceptionHandler        @2

FAULT.LNK

fault handler

fault /al:16

/map /li

libw toolhelp slibcew/NOD/NOE

fault.def


	Microsoft
	
	, Software Design Engineer
	Systems Developer Relations
	30 March, 1992

	The information and code provided in this document is subject to change without notice and does not represent a commitment on the part of Microsoft Corporation or the author.
	THE INFORMATION AND CODE PROVIDED HEREUNDER (COLLECTIVELY REFERRED TO AS "SOFTWARE") IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR, MICROSOFT CORPORATION, OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF THE AUTHOR, MICROSOFT CORPORATION, OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.
	The sample code may be copied and distributed royalty-free subject to the following conditions:
	1. You must distribute the sample code only in conjunction with and as a part of your software product;
	2. You do not use Microsoft's name, logo or trademark to market your software product;
	3. You include the copyright notice that appears on the Software on your product label and as a part of the sign-on message for your software product; and
	4. agree to indemnify, hold harmless, and defend Microsoft from and against any claims or lawsuits, including attorney's fees, that arise or result from the use or distribution of your software product.

	1 Application Robustness and Fault Trapping
	2 The Windows 3.1 ToolHelper DLL
	3 InterruptRegister
	case WM_CREATE:
	/*
	* pGlob points to global variables. We store the value
	* from MakeProcInstance in pfnInt. Earlier we initialized
	* the hInst field with the instance of the application.
	*/
	//ExceptionHandler is the callback's name (HANDLER.ASM)
	pGlob->pfnInt=MakeProcInstance((FARPROC)ExceptionHandler, pGlob->hInst);
	if (NULL!=pGlob->pfnInt)
	{
	//If we fail to register, then fail the create and the application.
	if (!InterruptRegister(NULL, pGlob->pfnInt))
	{
	MessageBox(hWnd, "InterruptRegister Failed.", "Fatal Error", MB_OK);
	return -1L;
	}
	}
	break;

	4 InterruptUnRegister
	case WM_DESTROY:
	//Remove our exception handler and free the proc address.
	if (NULL!=pGlob->pfnInt)
	{
	InterruptUnRegister(NULL);
	FreeProcInstance((FARPROC)pGlob->pfnInt);
	}
	PostQuitMessage(0);
	break;


	5 Application-Handled Faults
	6 The Interrupt Handler
	Interrupt Definition
	0 Divide by zero
	1 Debugger interrupt
	3 Breakpoint
	6 Invalid opcode
	12 Stack fault
	13 GP Fault
	14 Page fault not cause by normal virtual memory management
	256 Ctrl+Alt+SysRq was pressed.
	cProc ExceptionHandler, <PUBLIC,FAR>
	cBegin nogen
	mov ds,ax ;Make sure we can reference our data.
	mov ax,bp ;Load the interrupt number without changing
	mov bp,sp ;the BP register and without using the stack.
	mov bx,[bp+06]
	mov bp,ax
	;
	; Cycle through the possible faults we are looking for.
	; First, the high bit might be set in the interrupt meaning
	; that we have a low-stack fault. Since we do not handle
	; these, we exit this handler.
	;
	test bx,08000h ;Check high bit
	jnz EHExit ;Leave it it's set--we can't handle it.
	mov ax,_wException ;Get the exceptions we want to trap.
	or ax,ax ;Do we want any?
	jz EHExit
	EHDivideByZero:
	;;Check for divide by zero.
	test ax,EXCEPTION_DIVIDEBYZERO
	jz EHGPFault
	or bx,bx
	jz EHThrow
	EHGPFault:
	;;Check for a GP fault.
	test ax,EXCEPTION_GPFAULT
	jz EHExit
	cmp bx,13
	je EHThrow
	;
	; Code for each handling method goes here. See below.
	;
	cEnd nogen

	1. Pass the interrupt to the next handler.
	2. Terminate the application.
	3. Correct the problem and continue.
	4. Abort the operation and return an error to the faulting function using Catch and Throw.
	7 Pass the Interrupt to the Next Handler
	EHExit:
	retf

	8 Terminate the Application
	EHTerminate:
	add sp,10 ;Clear the return data on the stack.
	;
	; With TerminateApp you have the choice to display the standard
	; UAE box or not. This sample does since it otherwise would give
	; no indication of the problem.
	;
	cCall TerminateApp, <0, UAE_BOX>

	9 Correct the Problem and Continue
	EHRestart:
	;
	; This code illustrates what we need to do if we wanted to
	; clean up the problem and restart the instruction that faulted.
	;
	add sp,10 ;Clear the return data on the stack.
	iret ;Return to the faulting instruction.

	10 Abort the Operation with Catch and Throw
	WORD i;
	HANDLE hMem;
	/*
	* Call Catch and indicate what exceptions to trap.
	*
	* The first time we call Catch here we will get a 0 return value.
	* When we call Throw in our exception handler, Catch returns with
	* the value given in the second parameter to Throw. Throw must
	* use the same CATCHBUF we fill here in order to return here.
	*/
	//Indicate the trap(s) we want.
	wException=EXCEPTION_GPFAULT;
	/*
	* Save the register state. pcbEx is a global pointer to a CATCHBUF structure,
	* then check if we returned from the exception handler or Catch itself.
	*/
	if (0!=Catch(pcbEx))
	{
	/*
	* Free any resources this function allocated, perform other
	* cleanup, turn OFF any exception handling, and return a failure.
	*/
	wException=EXCEPTION_NONE;
	return NULL;
	}
	//The actual function goes here.
	...
	EHThrow:
	ccall Throw,<_pcbEx, 1> ;Return the exception to the faulting
	;function.



	11 Sample Application: FAULT.EXE
	MAKEFILE
	#
	# MAKEFILE
	#
	# FAULT
	# Copyright(c) Microsoft Corp. 1992 All Rights Reserved
	#
	#Remove '#' from next line for "silent" operation
	!CMDSWITCHES +s
	#Compiler and assembler flags
	CFLAGS=-c -G2sw -W3 -AS -Od -Zpe
	AFLAGS=-Mx -L
	#Standard definitions.
	DEFS=
	INCLS=fault.h
	OBJS = fault.obj handler.obj
	RCFILES=fault.h fault.ico
	.SUFFIXES: .h .c .asm .obj .exe .cxx .res .rc .bas
	goal: fault.exe
	##### Rules
	.asm.obj:
	masm $(AFLAGS) $(DEFS) $*.asm;
	.c.obj:
	cl $(CFLAGS) $(DEFS) $*.c
	.rc.res:
	rc -r $*.rc
	fault.exe : $(OBJS) fault.res fault.lnk fault.def
	link @fault.lnk
	rc -v fault.res
	##### Dependencies #####
	handler.obj : handler.asm
	fault.obj : fault.c $(INCLS)
	fault.res : fault.rc $(INCLS) $(RCFILES)
	FAULT.H
	/*
	* FAULT.H
	*
	* Definitions and function prototypes for Fault.
	*
	* Copyright(c) Microsoft Corp. 1992 All Rights Reserved
	*/
	#define IDR_MENU 1
	#define IDM_EXDIVIDEBYZERO 100
	#define IDM_EXGPFAULT 101
	//Structure holding the "global" variables. Creating a structure with
	typedef struct
	{
	HWND hWnd; //Top-level application window.
	HANDLE hInst; //Application instance handle.
	FARPROC pfnInt; //GP Fault Handler thunk.
	} GLOBALS;
	typedef GLOBALS FAR * LPGLOBALS;
	//External:
	extern LPGLOBALS pGlob;
	extern CATCHBUF cbEx;
	extern LPCATCHBUF pcbEx;
	extern WORD wException;
	/*
	* Flag values to store in the wException global variable that tells
	* the handler what type of exceptions we specifically want.
	*/
	#define EXCEPTION_NONE 0x0000 //Turns handling off.
	#define EXCEPTION_DIVIDEBYZERO 0x0001
	#define EXCEPTION_GPFAULT 0x0002
	#define EXCEPTION_ALL 0x0003 //Looks for all exceptions above.
	/*
	* Function prototypes.
	*/
	//FAULT.C
	LONG FAR PASCAL FaultWndProc(HWND, UINT, UINT, LONG);
	BOOL FAR PASCAL FPerformCalculation(void);
	HANDLE FAR PASCAL HAllocateNumbers(void);
	//HANDLER.ASM
	void FAR PASCAL ExceptionHandler(void);
	FAULT.C
	/*
	* FAULT.C
	*
	* Very small Windows application demonstrating how to use the TOOLHELP
	* library to trap GP Faults and Divide by Zero exceptions. Trapping these
	* faults allows an application to perform cleanup, save files, and
	* otherwise insure integrity of the user's data.
	*
	* Copyright(c) Microsoft Corp. 1992 All Rights Reserved
	*
	*/
	#include <windows.h>
	#include <toolhelp.h>
	#include "fault.h"
	//Global variable block.
	GLOBALS stGlobals;
	LPGLOBALS pGlob=&stGlobals;
	/*
	* These global variables hold information that is needed from the
	* interrupt handler. They are set apart here to make them more visible.
	*/
	CATCHBUF cbEx; //Stores register state.
	LPCATCHBUF pcbEx=(LPCATCHBUF)&cbEx; //Convenient pointer
	WORD wException; //Indicates which exceptions to trap.
	/*
	* WinMain
	*
	* Purpose:
	* Main entry point of application. Should register the app class
	* if a previous instance has not done so and do any other one-time
	* initializations.
	*
	* Parameters:
	* Standard
	*
	* Return Value:
	* Value to return to Windows--termination code.
	*
	*/
	int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
	LPSTR lpszCmdLine, int nCmdShow)
	{
	WNDCLASS wc;
	MSG msg;
	pGlob->hInst=hInstance;
	if (!hPrevInstance)
	{
	/*
	* Note that we do not need to unregister classes on a failure
	* since that's part of automatic app cleanup.
	*/
	wc.style = CS_HREDRAW | CS_VREDRAW;
	wc.lpfnWndProc = FaultWndProc;
	wc.cbClsExtra = 0;
	wc.cbWndExtra = 0;
	wc.hInstance = pGlob->hInst;
	wc.hIcon = LoadIcon(NULL, IDI_HAND);
	wc.hCursor = LoadCursor(NULL, IDC_ARROW);
	wc.hbrBackground = COLOR_APPWORKSPACE + 1;
	wc.lpszMenuName = MAKEINTRESOURCE(IDR_ICON);
	wc.lpszClassName = "Fault";
	if (!RegisterClass(&wc))
	return FALSE;
	}
	pGlob->hWnd=CreateWindow("Fault", "Exception Handler",
	WS_MINIMIZEBOX | WS_OVERLAPPEDWINDOW,
	CW_USEDEFAULT, CW_USEDEFAULT, 400, 120,
	NULL, NULL, hInstance, NULL);
	if (NULL==pGlob->hWnd)
	return FALSE;
	ShowWindow(pGlob->hWnd, nCmdShow);
	UpdateWindow(pGlob->hWnd);
	while (GetMessage(&msg, NULL, 0,0 ))
	{
	TranslateMessage(&msg);
	DispatchMessage(&msg);
	}
	return msg.wParam;
	}
	/*
	* FaultWndProc
	*
	* Purpose:
	* Window class procedure. Standard callback.
	*
	* Parameters:
	* The standard.
	*
	* Return Value:
	* The standard.
	*
	*/
	long FAR PASCAL FaultWndProc(HWND hWnd, UINT iMsg, UINT wParam, LONG lParam)
	{
	HANDLE hMem;
	switch (iMsg)
	{
	case WM_CREATE:
	/*
	* Install the ExceptionHandler function in HANDLER.ASM
	* as our fault handler and store the proc address in the
	* global variable block.
	*/
	pGlob->pfnInt=MakeProcInstance((FARPROC)ExceptionHandler, pGlob->hInst);
	if (NULL!=pGlob->pfnInt)
	{
	//If we fail to register, fail the create and the application.
	if (!InterruptRegister(NULL, pGlob->pfnInt))
	{
	MessageBox(hWnd, "InterruptRegister Failed.", "Fatal Error", MB_OK);
	return -1L;
	}
	}
	break;
	case WM_DESTROY:
	//Remove our exception handler and free the proc address.
	if (NULL!=pGlob->pfnInt)
	{
	InterruptUnRegister(NULL);
	FreeProcInstance((FARPROC)pGlob->pfnInt);
	}
	PostQuitMessage(0);
	break;
	case WM_COMMAND:
	switch (wParam)
	{
	case IDM_EXDIVIDEBYZERO:
	if (FPerformCalculation())
	{
	//This should NOT happen.
	MessageBox(hWnd, "IMPOSSIBLE: Missed a Divide by Zero!",
	"Fault", MB_OK | MB_ICONHAND);
	}
	else
	{
	MessageBox(hWnd, "Calculation failed: Divide by zero.",
	"Fault", MB_OK | MB_ICONEXCLAMATION);
	break;
	}
	break;
	case IDM_EXGPFAULT:
	hMem=HAllocateNumbers();
	if (NULL!=hMem)
	{
	//This should NOT happen.
	MessageBox(hWnd, "IMPOSSIBLE:  Missed the GP Fault!",
	"Fault", MB_OK | MB_ICONHAND);
	GlobalFree(hMem);
	}
	else
	{
	MessageBox(hWnd, "Allocation failed: GP fault.",
	"Fault", MB_OK | MB_ICONEXCLAMATION);
	break;
	}
	break;
	default:
	break;
	}
	break;
	default:
	return (DefWindowProc(hWnd, iMsg, wParam, lParam));
	}
	return 0L;
	}
	/*
	* FPerformCalculation
	*
	* Purpose:
	* Attempts to divide the number 10000 by the numbers 1 through 6.
	* However, this function was poorly written to use the wrong
	* terminating condition in a while loop, so the loop executes with
	* zero as the divisor and faults.
	*
	* Parameters:
	* None
	*
	* Return Value:
	* BOOL TRUE if the function succeeded (this should not happen)
	* FALSE if the function failed, even on a divide by zero
	* exception.
	*/
	BOOL FAR PASCAL FPerformCalculation(void)
	{
	WORD i;
	WORD wValue;
	/*
	* Call Catch and indicate what exceptions to trap.
	*
	* The first time we call Catch here we will get a 0 return value.
	* When we call Throw in our exception handler, Catch returns with
	* the value given in the second parameter to Throw. Throw must
	* use the same CATCHBUF we fill here in order to return here.
	*/
	//Indicate the trap(s) we want.
	wException=EXCEPTION_DIVIDEBYZERO;
	//Save the register state and check if we returned from the exception handler.
	if (0!=Catch(pcbEx))
	{
	/*
	* Now we can safely exit this procedure, skipping the code
	* that faulted. We indicate that we now want no exceptions
	* by setting wException to EXCEPTION_NONE.
	*
	***BE SURE to turn off exception handling that uses Catch
	* and Throw between messages. In other words, only use
	* Catch and Throw within the scope of a function, NOT on
	* the scope of an application.
	*/
	wException=EXCEPTION_NONE;
	return FALSE;
	}
	i=6;
	wValue=10000;
	/*
	* When we check i==1, the condition is TRUE so
	* we continue the loop. However, the post-decrement
	* on i makes it zero, which will fault.
	*/
	while (i--)
	wValue /=i;
	//We should never get here.
	wException=EXCEPTION_NONE;
	return TRUE;
	}
	/*
	* HAllocateNumbers
	*
	* Purpose:
	* Attempts to allocate a 1K block of memory and fill it with the
	* repeating sequence of the values 0 through 255. However, due to
	* another bug in this function, we end up writing past the end of
	* the segment. We trap the GP Fault and recover by freeing the memory
	* and indicating that the function failed.
	*
	* Parameters:
	* None
	*
	* Return Value:
	* HANDLE A global memory handle containing the numbers if
	* successful, NULL otherwise (including when we GP fault).
	*/
	HANDLE FAR PASCAL HAllocateNumbers(void)
	{
	LPSTR psz;
	WORD i;
	HANDLE hMem;
	/*
	* Call Catch and indicate what exceptions to trap.
	*
	* The first time we call Catch here we will get a 0 return value.
	* When we call Throw in our exception handler, Catch returns with
	* the value given in the second parameter to Throw. Throw must
	* use the same CATCHBUF we fill here in order to return here.
	*/
	//Indicate the trap(s) we want.
	wException=EXCEPTION_GPFAULT;
	//Save the register state and check if we returned from the exception handler.
	if (0!=Catch(pcbEx))
	{
	/*
	* Free any resources this function allocated, perform other
	* cleanup, turn OFF any exception handling, and return a failure.
	*/
	if (NULL!=hMem)
	{
	GlobalUnlock(hMem);
	GlobalFree(hMem);
	}
	wException=EXCEPTION_NONE;
	return NULL;
	}
	//Get 1024 bytes of memory.
	hMem=GlobalAlloc(GMEM_MOVEABLE, 1024);
	psz=GlobalLock(hMem);
	/*
	* Write to 1025 bytes of memory, thus accidentally walking over
	* the edge. Another case where an erroneous terminating condition
	* in a loop can cause such a problem.
	*/
	i=0;
	while (i++ <= 1024) //Should be i++ < 1024, not <=
	*psz++=(char)i;
	//We should never get here to return the handle.
	GlobalUnlock(hMem);
	wException=EXCEPTION_NONE;
	return hMem;
	}
	FAULT.INC
	;
	; FAULT.INC
	;
	; Definitions and external references for use from assembly modules.
	;
	; Copyright(c) Microsoft Corp. 1992 All Rights Reserved
	;
	;; External data.
	externFP <Throw> ;From Kernel
	externFP <TerminateApp> ;From ToolHelp
	externW <_wException> ;Indicates what exceptions we want.
	externFP <_pcbEx> ;Pointer to a CATCHBUF to use in Throw
	;; Bits for wException. These must match FAULT.H.
	EXCEPTION_NONE equ 00h //Turns handling off.
	EXCEPTION_DIVIDEBYZERO equ 01h
	EXCEPTION_GPFAULT equ 02h
	EXCEPTION_ALL equ 03h //Looks for all exceptions above.
	HANDLER.ASM
	;
	; HANDLER.ASM
	;
	; ExceptionHandler function used as the callback for the GP Fault Handler.
	;
	; Copyright(c) Microsoft Corp. 1992 All Rights Reserved
	;
	.xlist
	?PLM=1
	?WIN=1
	include cmacros.inc
	include toolhelp.inc
	include fault.inc
	.list
	createSeg HANDLER_TEXT, HANDLER_TEXT, BYTE, PUBLIC, CODE
	sBegin HANDLER_TEXT
	assumes CS,HANDLER_TEXT
	assumes DS,_DATA
	;
	; ExceptionHandler
	;
	; Purpose:
	; Exception handling function called from ToolHelp when it detects
	; an exception. If the error was caused by our application AND we
	; want to trap it, then we use Throw to return control to the function
	; that faulted at a point BEFORE the erroneous code. If we do not
	; want the fault, then we just pass it to the next interrupt handler.
	;
	; If the fault was caused by our application, we use Throw to return to
	; whatever function caused it. Otherwise we just let the fault pass.
	;
	; Parameters:
	; None; however, the stack contains values of interest. We use AX to
	; simply set the DS register properly.
	;
	; | . |
	; | . |
	; | . |
	; |-----------------------|
	; | SS (fault) | SP + 12h
	; |-----------------------|
	; | SP (fault) | SP + 10h
	; |-----------------------|
	; | Flags (fault) | SP + 0Eh
	; |-----------------------|
	; | CS (fault) | SP + 0Ch
	; |-----------------------|
	; | IP (fault) | SP + 0Ah
	; |-----------------------|
	; | handle (internal) | SP + 08h
	; |-----------------------|
	; | interrupt number | SP + 06h
	; |-----------------------|
	; | AX (NOT the DS) | SP + 04h
	; |-----------------------|
	; | CS (toolhelp.dll) | SP + 02h
	; |-----------------------|
	; | IP (toolhelp.dll) | SP + 00h
	; +-----------------------+
	;
	; Note that the interrupt number may have the high bit set to
	; indicate a low-stack fault (above and beyond a normal Int 12 stack)
	; fault. We trap this condition if we're trapping a stack fault or a
	; GP fault.
	;
	cProc ExceptionHandler, <PUBLIC,FAR>
	cBegin nogen
	mov ds,ax ;Make sure we can reference our data.
	mov ax,bp
	mov bp,sp
	mov bx,[bp+06]
	mov bp,ax
	;
	; Cycle through the possible faults we are looking for.
	; If BX contains that fault, then we use Throw to return
	; the error to the application. Otherwise we pass the
	; fault down the chain.
	;
	; First, the high bit might be set in the interrupt meaning
	; that we have a low-stack fault. Since we do not handle
	; these, we exit this handler.
	;
	test bx,08000h ;Check high bit
	jnz EHExit ;Leave it it's set--we can't handle it.
	mov ax,_wException ;Get the exceptions we want to trap.
	or ax,ax ;Do we want any?
	jz EHExit
	EHDivideByZero:
	;
	; Check for divide by zero.
	;
	test ax,EXCEPTION_DIVIDEBYZERO
	jz EHGPFault
	or bx,bx
	jz EHThrow
	EHGPFault:
	;
	; Check for a GP fault.
	;
	test ax,EXCEPTION_GPFAULT
	jz EHExit
	cmp bx,13
	je EHThrow
	EHThrow:
	ccall Throw,<_pcbEx, 1> ;Return the exception to the faulting
	;function.
	EHExit:
	retf
	EHRestart:
	;
	; This code illustrates what we need to do if we wanted to
	; clean up the problem and restart the instruction that faulted.
	; This exception handler does not use this code.
	;
	add sp,10 ;Clear the return data on the stack.
	iret ;Return to the faulting instruction.
	EHTerminate:
	;
	; This code illustrates what we need to do if we wanted to
	; terminate the applciation on this exception. This exception
	; handler does not use this code.
	;
	add sp,10 ;Clear the return data on the stack.
	;
	; With TerminateApp you have the choice to display the standard
	; UAE box or not. This sample does since it otherwise would give
	; no indication of the problem.
	;
	cCall TerminateApp, <0, UAE_BOX>
	cEnd nogen
	sEnd HANDLER_TEXT
	END
	FAULT.RC
	/*
	* FAULT.RC
	*
	* Resources such as icons, menus, strings, accelerators, and dialogs.
	*
	* Copyright(c) Microsoft Corp. 1992 All Rights Reserved
	*/
	#include "fault.h"
	IDR_MENU MENU
	BEGIN
	POPUP "&Exceptions"
	BEGIN
	MENUITEM "&Divide by Zero", IDM_EXDIVIDEBYZERO
	MENUITEM "&GP Fault", IDM_EXGPFAULT
	END
	END
	FAULT.DEF
	NAME FAULT
	DESCRIPTION 'Exception Handler with Catch and Throw'
	EXETYPE WINDOWS
	STUB 'WINSTUB.EXE'
	CODE PRELOAD MOVEABLE DISCARDABLE
	DATA PRELOAD MOVEABLE MULTIPLE
	SEGMENTS
	_TEXT PRELOAD MOVEABLE DISCARDABLE
	HANDLER_TEXT PRELOAD FIXED
	HEAPSIZE 8192
	STACKSIZE 8192
	EXPORTS FaultWndProc @1
	ExceptionHandler @2
	FAULT.LNK
	fault handler
	fault /al:16
	/map /li
	libw toolhelp slibcew/NOD/NOE
	fault.def


